libp2p/tutorials/
ping.rs

1// Copyright 2021 Protocol Labs.
2//
3// Permission is hereby granted, free of charge, to any person obtaining a
4// copy of this software and associated documentation files (the "Software"),
5// to deal in the Software without restriction, including without limitation
6// the rights to use, copy, modify, merge, publish, distribute, sublicense,
7// and/or sell copies of the Software, and to permit persons to whom the
8// Software is furnished to do so, subject to the following conditions:
9//
10// The above copyright notice and this permission notice shall be included in
11// all copies or substantial portions of the Software.
12//
13// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
14// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
16// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
17// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
18// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
19// DEALINGS IN THE SOFTWARE.
20
21//! # Ping Tutorial - Getting started with rust-libp2p
22//!
23//! This tutorial aims to give newcomers a hands-on overview of how to use the
24//! Rust libp2p implementation. People new to Rust likely want to get started on
25//! [Rust](https://www.rust-lang.org/) itself, before diving into all the
26//! networking fun. This library makes heavy use of asynchronous Rust. In case
27//! you are not familiar with this concept, the Rust
28//! [async-book](https://rust-lang.github.io/async-book/) should prove useful.
29//! People new to libp2p might prefer to get a general overview at
30//! [libp2p.io](https://libp2p.io/)
31//! first, although libp2p knowledge is not required for this tutorial.
32//!
33//! We are going to build a small `ping` clone, sending a ping to a peer,
34//! expecting a pong as a response.
35//!
36//! ## Scaffolding
37//!
38//! Let's start off by
39//!
40//! 1. Updating to the latest Rust toolchain, e.g.: `rustup update`
41//!
42//! 2. Creating a new crate: `cargo init rust-libp2p-tutorial`
43//!
44//! 3. Adding `libp2p` as well as `futures` as dependencies in the
45//!    `Cargo.toml` file. Current crate versions may be found at
46//!    [crates.io](https://crates.io/).
47//!    We will also include `tokio` with the
48//!    "attributes" feature to allow for an `async main`.
49//!    At the time of writing we have:
50//!
51//!    ```yaml
52//!    [package]
53//!        name = "rust-libp2p-tutorial"
54//!        version = "0.1.0"
55//!        edition = "2021"
56//!
57//!    [dependencies]
58//!        libp2p = { version = "0.54", features = ["noise", "ping", "tcp", "tokio", "yamux"] }
59//!        futures = "0.3.30"
60//!        tokio = { version = "1.37.0", features = ["full"] }
61//!        tracing-subscriber = { version = "0.3", features = ["env-filter"] }
62//!    ```
63//!
64//! ## Network identity
65//!
66//! With all the scaffolding in place, we can dive into the libp2p specifics.
67//! First we need to create a network identity for our local node in `async fn
68//! main()`, annotated with an attribute to allow `main` to be `async`.
69//! Identities in libp2p are handled via a public/private key pair.
70//! Nodes identify each other via their [`PeerId`](crate::PeerId) which is
71//! derived from their public key. Now, replace the contents of main.rs by:
72//!
73//! ```rust
74//! use std::error::Error;
75//!
76//! use tracing_subscriber::EnvFilter;
77//!
78//! #[tokio::main]
79//! async fn main() -> Result<(), Box<dyn Error>> {
80//!     let _ = tracing_subscriber::fmt()
81//!         .with_env_filter(EnvFilter::from_default_env())
82//!         .try_init();
83//!
84//!     let mut swarm = libp2p::SwarmBuilder::with_new_identity();
85//!
86//!     Ok(())
87//! }
88//! ```
89//!
90//! Go ahead and build and run the above code with: `cargo run`. Nothing happening thus far.
91//!
92//! ## Transport
93//!
94//! Next up we need to construct a transport. Each transport in libp2p provides encrypted streams.
95//! E.g. combining TCP to establish connections, NOISE to encrypt these connections and Yamux to run
96//! one or more streams on a connection. Another libp2p transport is QUIC, providing encrypted
97//! streams out-of-the-box. We will stick to TCP for now. Each of these implement the [`Transport`]
98//! trait.
99//!
100//! ```rust
101//! use std::error::Error;
102//!
103//! use libp2p::{noise, tcp, yamux};
104//! use tracing_subscriber::EnvFilter;
105//!
106//! #[tokio::main]
107//! async fn main() -> Result<(), Box<dyn Error>> {
108//!     let _ = tracing_subscriber::fmt()
109//!         .with_env_filter(EnvFilter::from_default_env())
110//!         .try_init();
111//!
112//!     let mut swarm = libp2p::SwarmBuilder::with_new_identity()
113//!         .with_tokio()
114//!         .with_tcp(
115//!             tcp::Config::default(),
116//!             noise::Config::new,
117//!             yamux::Config::default,
118//!         )?;
119//!
120//!     Ok(())
121//! }
122//! ```
123//!
124//! ## Network behaviour
125//!
126//! Now it is time to look at another core trait of rust-libp2p: the
127//! [`NetworkBehaviour`]. While the previously introduced trait [`Transport`]
128//! defines _how_ to send bytes on the network, a [`NetworkBehaviour`] defines
129//! _what_ bytes and to _whom_ to send on the network.
130//!
131//! To make this more concrete, let's take a look at a simple implementation of
132//! the [`NetworkBehaviour`] trait: the [`ping::Behaviour`](crate::ping::Behaviour).
133//! As you might have guessed, similar to the good old ICMP `ping` network tool,
134//! libp2p [`ping::Behaviour`](crate::ping::Behaviour) sends a ping to a peer and expects
135//! to receive a pong in turn. The [`ping::Behaviour`](crate::ping::Behaviour) does not care _how_
136//! the ping and pong messages are sent on the network, whether they are sent via
137//! TCP, whether they are encrypted via [noise](crate::noise) or just in
138//! [plaintext](crate::plaintext). It only cares about _what_ messages and to _whom_ to sent on the
139//! network.
140//!
141//! The two traits [`Transport`] and [`NetworkBehaviour`] allow us to cleanly
142//! separate _how_ to send bytes from _what_ bytes and to _whom_ to send.
143//!
144//! With the above in mind, let's extend our example, creating a
145//! [`ping::Behaviour`](crate::ping::Behaviour) at the end:
146//!
147//! ```rust
148//! use std::error::Error;
149//!
150//! use libp2p::{noise, ping, tcp, yamux};
151//! use tracing_subscriber::EnvFilter;
152//!
153//! #[tokio::main]
154//! async fn main() -> Result<(), Box<dyn Error>> {
155//!     let _ = tracing_subscriber::fmt()
156//!         .with_env_filter(EnvFilter::from_default_env())
157//!         .try_init();
158//!
159//!     let mut swarm = libp2p::SwarmBuilder::with_new_identity()
160//!         .with_tokio()
161//!         .with_tcp(
162//!             tcp::Config::default(),
163//!             noise::Config::new,
164//!             yamux::Config::default,
165//!         )?
166//!         .with_behaviour(|_| ping::Behaviour::default())?;
167//!
168//!     Ok(())
169//! }
170//! ```
171//!
172//! ## Swarm
173//!
174//! Now that we have a [`Transport`] and a [`NetworkBehaviour`], we can build the [`Swarm`]
175//! which connects the two, allowing both to make progress. Put simply, a [`Swarm`] drives both a
176//! [`Transport`] and a [`NetworkBehaviour`] forward, passing commands from the [`NetworkBehaviour`]
177//! to the [`Transport`] as well as events from the [`Transport`] to the [`NetworkBehaviour`].
178//!
179//! ```rust
180//! use std::error::Error;
181//!
182//! use libp2p::{noise, ping, tcp, yamux};
183//! use tracing_subscriber::EnvFilter;
184//!
185//! #[tokio::main]
186//! async fn main() -> Result<(), Box<dyn Error>> {
187//!     let _ = tracing_subscriber::fmt()
188//!         .with_env_filter(EnvFilter::from_default_env())
189//!         .try_init();
190//!
191//!     let mut swarm = libp2p::SwarmBuilder::with_new_identity()
192//!         .with_tokio()
193//!         .with_tcp(
194//!             tcp::Config::default(),
195//!             noise::Config::new,
196//!             yamux::Config::default,
197//!         )?
198//!         .with_behaviour(|_| ping::Behaviour::default())?
199//!         .build();
200//!
201//!     Ok(())
202//! }
203//! ```
204//!
205//! ## Idle connection timeout
206//!
207//! Now, for this example in particular, we need set the idle connection timeout.
208//! Otherwise, the connection will be closed immediately.
209//!
210//! Whether you need to set this in your application too depends on your usecase.
211//! Typically, connections are kept alive if they are "in use" by a certain protocol.
212//! The ping protocol however is only an "auxiliary" kind of protocol.
213//! Thus, without any other behaviour in place, we would not be able to observe the pings.
214//!
215//! ```rust
216//! use std::{error::Error, time::Duration};
217//!
218//! use libp2p::{noise, ping, tcp, yamux};
219//! use tracing_subscriber::EnvFilter;
220//!
221//! #[tokio::main]
222//! async fn main() -> Result<(), Box<dyn Error>> {
223//!     let _ = tracing_subscriber::fmt()
224//!         .with_env_filter(EnvFilter::from_default_env())
225//!         .try_init();
226//!
227//!     let mut swarm = libp2p::SwarmBuilder::with_new_identity()
228//!         .with_tokio()
229//!         .with_tcp(
230//!             tcp::Config::default(),
231//!             noise::Config::new,
232//!             yamux::Config::default,
233//!         )?
234//!         .with_behaviour(|_| ping::Behaviour::default())?
235//!         .build();
236//!
237//!     Ok(())
238//! }
239//! ```
240//!
241//! ## Multiaddr
242//!
243//! With the [`Swarm`] in place, we are all set to listen for incoming
244//! connections. We only need to pass an address to the [`Swarm`], just like for
245//! [`std::net::TcpListener::bind`]. But instead of passing an IP address, we
246//! pass a [`Multiaddr`] which is yet another core concept of libp2p worth
247//! taking a look at.
248//!
249//! A [`Multiaddr`] is a self-describing network address and protocol stack that
250//! is used to establish connections to peers. A good introduction to
251//! [`Multiaddr`] can be found at
252//! [docs.libp2p.io/concepts/addressing](https://docs.libp2p.io/concepts/addressing/)
253//! and its specification repository
254//! [github.com/multiformats/multiaddr](https://github.com/multiformats/multiaddr/).
255//!
256//! Let's make our local node listen on a new socket.
257//! This socket is listening on multiple network interfaces at the same time. For
258//! each network interface, a new listening address is created. These may change
259//! over time as interfaces become available or unavailable.
260//! For example, in case of our TCP transport it may (among others) listen on the
261//! loopback interface (localhost) `/ip4/127.0.0.1/tcp/24915` as well as the local
262//! network `/ip4/192.168.178.25/tcp/24915`.
263//!
264//! In addition, if provided on the CLI, let's instruct our local node to dial a
265//! remote peer.
266//!
267//! ```rust
268//! use std::{error::Error, time::Duration};
269//!
270//! use libp2p::{noise, ping, tcp, yamux, Multiaddr};
271//! use tracing_subscriber::EnvFilter;
272//!
273//! #[tokio::main]
274//! async fn main() -> Result<(), Box<dyn Error>> {
275//!     let _ = tracing_subscriber::fmt()
276//!         .with_env_filter(EnvFilter::from_default_env())
277//!         .try_init();
278//!
279//!     let mut swarm = libp2p::SwarmBuilder::with_new_identity()
280//!         .with_tokio()
281//!         .with_tcp(
282//!             tcp::Config::default(),
283//!             noise::Config::new,
284//!             yamux::Config::default,
285//!         )?
286//!         .with_behaviour(|_| ping::Behaviour::default())?
287//!         .build();
288//!
289//!     // Tell the swarm to listen on all interfaces and a random, OS-assigned
290//!     // port.
291//!     swarm.listen_on("/ip4/0.0.0.0/tcp/0".parse()?)?;
292//!
293//!     // Dial the peer identified by the multi-address given as the second
294//!     // command-line argument, if any.
295//!     if let Some(addr) = std::env::args().nth(1) {
296//!         let remote: Multiaddr = addr.parse()?;
297//!         swarm.dial(remote)?;
298//!         println!("Dialed {addr}")
299//!     }
300//!
301//!     Ok(())
302//! }
303//! ```
304//!
305//! ## Continuously polling the Swarm
306//!
307//! We have everything in place now. The last step is to drive the [`Swarm`] in
308//! a loop, allowing it to listen for incoming connections and establish an
309//! outgoing connection in case we specify an address on the CLI.
310//!
311//! ```no_run
312//! use std::{error::Error, time::Duration};
313//!
314//! use futures::prelude::*;
315//! use libp2p::{noise, ping, swarm::SwarmEvent, tcp, yamux, Multiaddr};
316//! use tracing_subscriber::EnvFilter;
317//!
318//! #[tokio::main]
319//! async fn main() -> Result<(), Box<dyn Error>> {
320//!     let _ = tracing_subscriber::fmt()
321//!         .with_env_filter(EnvFilter::from_default_env())
322//!         .try_init();
323//!
324//!     let mut swarm = libp2p::SwarmBuilder::with_new_identity()
325//!         .with_tokio()
326//!         .with_tcp(
327//!             tcp::Config::default(),
328//!             noise::Config::new,
329//!             yamux::Config::default,
330//!         )?
331//!         .with_behaviour(|_| ping::Behaviour::default())?
332//!         .build();
333//!
334//!     // Tell the swarm to listen on all interfaces and a random, OS-assigned
335//!     // port.
336//!     swarm.listen_on("/ip4/0.0.0.0/tcp/0".parse()?)?;
337//!
338//!     // Dial the peer identified by the multi-address given as the second
339//!     // command-line argument, if any.
340//!     if let Some(addr) = std::env::args().nth(1) {
341//!         let remote: Multiaddr = addr.parse()?;
342//!         swarm.dial(remote)?;
343//!         println!("Dialed {addr}")
344//!     }
345//!
346//!     loop {
347//!         match swarm.select_next_some().await {
348//!             SwarmEvent::NewListenAddr { address, .. } => println!("Listening on {address:?}"),
349//!             SwarmEvent::Behaviour(event) => println!("{event:?}"),
350//!             _ => {}
351//!         }
352//!     }
353//! }
354//! ```
355//!
356//! ## Running two nodes
357//!
358//! For convenience the example created above is also implemented in full in
359//! `examples/ping.rs`. Thus, you can either run the commands below from your
360//! own project created during the tutorial, or from the root of the rust-libp2p
361//! repository. Note that in the former case you need to ignore the `--example
362//! ping` argument.
363//!
364//! You need two terminals. In the first terminal window run:
365//!
366//! ```sh
367//! cargo run --example ping
368//! ```
369//!
370//! It will print the new listening addresses, e.g.
371//! ```sh
372//! Listening on "/ip4/127.0.0.1/tcp/24915"
373//! Listening on "/ip4/192.168.178.25/tcp/24915"
374//! Listening on "/ip4/172.17.0.1/tcp/24915"
375//! Listening on "/ip6/::1/tcp/24915"
376//! ```
377//!
378//! In the second terminal window, start a new instance of the example with:
379//!
380//! ```sh
381//! cargo run --example ping -- /ip4/127.0.0.1/tcp/24915
382//! ```
383//!
384//! Note: The [`Multiaddr`] at the end being one of the [`Multiaddr`] printed
385//! earlier in terminal window one.
386//! Both peers have to be in the same network with which the address is associated.
387//! In our case any printed addresses can be used, as both peers run on the same
388//! device.
389//!
390//! The two nodes will establish a connection and send each other ping and pong
391//! messages every 15 seconds.
392//!
393//! [`Multiaddr`]: crate::core::Multiaddr
394//! [`NetworkBehaviour`]: crate::swarm::NetworkBehaviour
395//! [`Transport`]: crate::core::Transport
396//! [`PeerId`]: crate::core::PeerId
397//! [`Swarm`]: crate::swarm::Swarm